Solving the problem of dendrites is very difficult as lithium can dendrite through polymers, single crystals, and glassy materials with no grain boundaries, as well as polycrystalline materials with grain boundaries, so none of those microstructures is by itself a solution to the dendrite problem. That is why we have been so excited at QuantumScape to have developed a material and system that we believe can address this issue.
Energy Density and Cost – Our target is to stack several dozen of our single layer unit cells together into a multilayer cell and achieve a target energy density of 1,000 Wh/L, enabled by the elimination of the anode host material. This would allow greater range than today’s state-of-the-art commercially shipping BEV cells, such as the 2170 cell used in the Tesla Model 3 which has an energy density of 713 Wh/L, as reported by CleanTechnica. The higher energy density design targeted by the QuantumScape cells also reduces cost by eliminating both the anode material and the anode manufacturing line, while simplifying the formation and aging process, one of the most expensive parts of the battery manufacturing process. Our separator consists of generally inexpensive precursor materials and utilizes processes suitable for high volume continuous flow production.
In summary, when evaluating battery performance test data, it is important to note that there are many compromises in test conditions that can be made when showing battery cycle life data, many of which result in a cell that is not capable of meeting commercial requirements. What makes QuantumScape’s performance data interesting is not just that it shows over 1,000 cycles with good capacity retention, but that it does so under commercially-relevant conditions, including high current density, close-to-room temperature, full depth of discharge, modest pressure, zero excess lithium, and commercially-relevant area and cathode loading. We hope this explanation helps provide a better understanding of the data we have shared and our progress towards developing solid-state lithium-metal batteries.
Please note that the information in this posting includes “forward-looking statements” within the meaning of Section 27A of the Securities Act and Section 21E of the Securities Exchange Act of 1934, as amended. All statements, other than statements of present or historical fact, are forward-looking statements. These forward-looking statements are based on management’s current expectations and assumptions about future events and are based on currently available information as to the outcome and timing of future events.
These forward-looking statements involve significant risks and uncertainties that could cause the actual results to differ materially from the expected results. Most of these factors are outside QS’s control and are difficult to predict. Factors that may cause such differences include, but are not limited to: (i) QS faces significant barriers in its attempts to scale from a single layer pouch cell and complete development of its solid-state battery cell and related manufacturing processes, and development may not be successful, (ii) QS may encounter substantial delays in the development, manufacture, regulatory approval, and launch of QS solid-state battery cells, which could prevent QS from commercializing products on a timely basis, if at all, (iii) QS may be unable to adequately control the costs of manufacturing its solid-state separator and battery cells, and (iv) QS may not be successful in competing in the battery market. QS cautions that the foregoing list of factors is not exclusive. Additional information about factors that could materially affect QS is set forth under the “Risk Factors” section in the prospectus filed with the SEC on December 31, 2020 and available on the SEC’s website at www.sec.gov.